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In  the steady-state counterpart of the wake behind a totally immersed, self- 
propelled body, simulated in an air tunnel by a concentric nozzle and disk, 
measurements were made of mean-flow velocity and pressure, turbulence intensi- 
ties in the three co-ordinate directions, turbulent shear, and mean temporal 
gradient and auto-correlation of the axial-velocity fluctuations. Through the 
equations of momentum and energy for the mean and the turbulent motion, the 
experimental data were used to  verify the condition of self-propuhion and the 
accuracy of measurement, and to provide a picture of the force field and the 
process of energy transformation. 

The variation of the principal flow characteristics was analysed with the aid 
of appropriate hypotheses as to the transport mechanism and the structure of 
the turbulence. Two hypotheses proved to be most useful: a more general concept 
of self-preservation than is known from elementary free-turbulence flows; and 
the assumption that beyond an intial shear zone the turbulence can be regarded 
as having originated at a point source in the flow. Extension of the analysis to 
flows past line and plane sources of turbulence then permitted its validity to be 
tested with the extensive experimental information available on decaying 
homogeneous turbulence behind a grid. The rates of diffusion and decay were 
first deduced in terms of the conventional power laws and thereafter, on the 
assumption of proportionality of all length scales for any one flow, in terms of 
more elaborate relationships. The most noteworthy results of the latter approach 
are the asymptotic development of wake widths and eddy scales toward constant 
values and the elimination of the subdivision of the flow field into a number of 
decay zones of vaguely defhed limits that has been customary in the theory of 
homogeneous turbulence. Agreement with corresponding experimental results 
for a self-propelled body and a grid (i.e. for a point and a plane source of turbu- 
lence) was obtained over the entire available ranges of measurement. 

1. Introduction 
Experimental information on various elementary types of free-turbulence 

shear flows, mainly on jets and wakes, has become almost as comprehensive in 
recent years as that on homogeneous turbulence. Advances have also been made 
with respect to the analytical prediction of the distribution and the development 
of mean-flow and turbulence characteristics. Moreover, refined investigations of 
the turbulent structure have furthered our understanding of the turbulent-flow 
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processes and helped at least to disclose, if not eliminate, many inadequacies of 
the available theories. In all these advances engineers had an active part because 
of the relevance of a great number of engineering problems; nevertheless, one 
type of free-turbulence flow with widespread practical application-flow in the 
wake of a body with hydrodynamic self-propulsion-has received almost no 
attention to date. 

In order to provide experimental information about the wake flow behind 
a completely immersed, axisymmetric, self-propelled body travelling at constant 
speed, the steady-state equivalent of this flow was simulated in an air tunnel 
through the principle of relative motion and studied under two aspects: first, as 
a process of production, convection, diffusion, and dissipation of turbulence; 
secondly, as a continuous and systematic change of mean-flow and turbulence 
patterns and their respective characteristics. Measurements of root-mean- 
squares, mean cross-products, and auto-correlations of the turbulent velocity 
fluctuations, as well as mean velocity and mean pressure, were evaluated with 
the aid of the pertinent equations of motion in order to check the consistency of 
measurements, to bring out the interrelation and understand the significance of 
the two aspects of the flow process, and to provide means of prediction wherever 
possible. 

It is the essential lack of disturbance of the mean flow which distinguishes the 
wake of a self-propelled body from ordinary wakes and makes it an interesting 
subject for systematic investigation. While a towed body represents the external 
application of a force which strains the flow as it produces turbulence energy, 
a body which is self-propelled represents an essentially direct and strainless 
input of turbulence energy. In consequence, the flow behind a self-propelled 
body should be expected to have only such overall properties in common with 
ordinary wake flow as inhomogeneity and intermittency, but to be characteized 
otherwise by shear-free energy transformation like homogeneous turbulence 
behind a grid. As a matter of fact, the mechanisms by which turbulence energy 
is produced by a self-propelled body and a grid reveal a remarkable similarity. 
Except in an initial region strained by locally counteracting forces-drag and 
propulsive force near the body, drag and pressure drop near the grid-the first 
can be considered a point sourc~ of turbulence to the same degree of approxima- 
tion as the second simulates a plane source. A coherent analysis of the flows past 
a point, a line, and a plane source of turbulence as axisymmetric, two-dimensional 
and one-dimensional counterparts is thus in order. Not only should the generality 
of the analysis thereby be increased, but more experimental material should 
become available to test its validity, and a new basis should be gained for a 
critical re-examination of the customary assumptions in the theory of homo- 
geneous turbulence. 

2. Experimental equipment and technique 
Experiments were performed in an air tunnel with a 5 ft. wide, octagonal test 

section of the Iowa Institute of Hydraulic Researoh, at a velocity of 6Oft./sec. 
The self-propelled body was simulated by a stationary disk of 1.8 in. diameter 
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mounted on the end of a tube of 0.437 in. inner diameter at the tunnel axis, 1.5 ft. 
past the bell-mouth entrance of the test section (see figure 1). Flow was provided 
through the pipe to yield a jet with just sufficient thrust to reduce to zero the net 
force on the pipe-disk arrangement. The air for the jet was supplied from the 
12 x 12 ft. plenum chamber of the air tunnel by a blower, and was passed through 
a cooling system in order to compensate for the temperature increase in the 
blower. The disk was held in place by four spring-steel wires of 0.008 in. diameter. 
The wake effect of these wires as well as the wall effect of the tunnel was found to 
be negligible (Ridjanovic 1963). 

0.008 in. supporting wires 

FIUURE 1. Details of test apparatus. 

Preliminary tests were conducted to produce a free stream with a deviation 
from a uniform velocity distribution of less than 0.1 yo, with a turbulence level 
of less than 0.2 %, and with a negligible longitudinal pressure variation. Great 
pains were taken to establish axial symmetry of the flow past the disk. It was 
found that, even with the boundary-layer separation upstream from the disk 
controlled by the transition piece shown in figure 1, the symmetry was very 
markedly affected by the slightest change in alignment of pipe and disk. With 
axial symmetry finally realized, the variation of flow characteristics was deter- 
mined by only one measurement traverse in each cross-section. 

The static pressure at a point was measured with a hypodermic-needle static 
tube of 0.049 in. diameter. The mean velocity was obtained from the difference 
between the readings of the static tube and a blunt-ended stagnation tube with 
an outer and inner diameter of 0.042 and 0.025in. Both the static and the 
stagnation tube could be mounted interchangeably on a horizontal traversing 
mechanism indicating the radial position to 0.001 ft. and connected to a differ- 
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ential micromanometer reading to 0.001 in. of alcohol. Where necessary, the 
precision of measurement was increased fourfold by tilting the manometer. The 
readings were taken with reference to a known static pressure and stagnation 
pressure, respectively, within the flow. A more detailed description of the 
instruments and the corrections applied for their use in turbulent flow is given 
by Ridjanovic (1963) and Wang (1965). 

For the measurement of the turbulence characteristics ut2, d2, wI2, u'v', 
( a ~ ' / a t ) ~ ,  and R,, a IIHR hot-wire anemometer, type T-A, and a IIHR mean- 
square analyser, type QK329, were used, the first of which operates on the 
principle of constant temperature as described by Hubbard (1957). The sensing 
elements of the single- and crossed-wire probes were made of a 0.00012in. 
platinum-coated tungsten wire with a copper plating that was etched to give the 
wire a cold resistance of P 5  Ohms. The distance between the crossed wires was 
kept near 0.025 in. The effect of the unavoidable asymmetry in the crossed-wire 
probe was eIiminated by taking double sets of readings, rotating'the instrument 
180" about the axis of flow direction between sets. On the assumption that the 
energies of two uncorrelated turbulent fields superpose linearly, the measured 
squared intensities were corrected by subtracting the respective squares of the 
local air-tunnel turbulence intensities.? In  regions far downstream from the 
turbulence source and along the edges of the diffusion zone, this correction was 
quite substantial. 

The significant scales of the turbulence and the energy distribution among 
them were determined from measurements of the auto-correlation and the one- 
dimensional power spectrum. The auto-correlation function of the axial-velocity 
fluctuation 

_ _ - -  

___- 
R, = u;u;+7/21;a (1) 

was obtained by means of a delay line, model 802-G1, AD-YU Electronics Lab., 
Inc., which has a delay time T adjustable in steps of 2psec up to 18msec and a 
cut-off frequency of 3517 for 3 decibel band-width. A delay-line driver was built 
by the Institute for the purpose of restoring the amplitude of the delayed signal 
u;+, to its original magnitude and transmitting it with the undelayed signal u; to a 
root-mean-square analyser. The system was calibrated with a known sinusoidal 
wave from an audio oscillator at successive increments of delay time. The spec- 
trum measurements are presently being repeated with an improved technique 
and will be reported in the near future. 

If the velocity fluctuations of the turbulence are visualized as the result of 
heterogeneously composed eddies carried along by the mean flow, then there 
can be distinguished by their function in the energy-transfer process two groups 
of eddies, each of which is characterized by a significant length scale. In  the 
following, the length scale 

t Ridjanovic (1963) used the intensities rather than their squares for this correction. 
All affected data were revised before their application in this paper. 



Flow in the wake of self-propelled bodies 629 

where T,, is the smallest delay time at which R, becomes zero (see figure l l ) ,  is 
considered representative of the size of those eddies that carry most of the 
turbulence energy. The dissipation length A, on the other hand, can be considered 
roughly indicative of the eddies responsible for the energy dissipation (strictly 
in the final period only) and can either be evaluated from the spectrum curve or 
from the measured temporal velocity derivative au'/at through the definition 

where the bars indicate temporal averages. Both evaluations are strictly applic- 
able only to isotropic turbulence but can be used here on the assumption of local 
isotropy within the small-scale structure of turbulence. Because of the diffi- 
culties in getting unbiased measurements of au'/at, the determination of h has 
been postponed until the spectrum measurements are completed. 

3. Experimental realization of the flow 
A criterion for the experimental realization of the desired wake flow past an 

axisymmetric, self-propelled body is obtained from the momentum equation. 
A useful form of this equation is derived by integrating the first equation of 
Reynolds over a region bounded by a normal reference section with uniform 

------- 

JZ 

FIGURE 2. Definition sketch. 

velocity distribution well upstream from the disk, a normal section a t  distance 
x downstream, and a cylindrical surface of radius ro = 5 0  which includes the 
diffusion zone over the entire range of measurements (see figure 2). If, for high 
Reynolds numbers, the viscous stress 2,u dZ/dx is neglected in comparison to the 
normal Reynolds stress pz1)2 and the mean ambient pressure 1, (referred to a zero 
pressure in the free stream), the resulting equation may be written in the 
following non-dimensional form 
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No external forces have been included in this equation, because the flow is con- 
sidered to be unaffected by body forces such as gravity, and because the drag of 
pipe and disk is balanced by the thrust of the jet. 

From a series of exploratory measurements, the average efflux velocity V, of 
the jet for which equation (4) was satisfied was found to be 3.64U0 for the specific 
apparatus used (Wang 1965). The data obtained from the final measurements 
with the correct velocity ratio V,/U, have been evaluated by Ridjanovic (1963) 
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and his results are plotted in figure 3. When corresponding ordinates are summed 
up according to equation (a), the results do not deviate from the requirement of 
the equation by more than 0.5 % of the reference momentum flux P ~ ( ~ I I ) ~ U &  

It is interesting to note that the change in momentum flux between the refer- 
ence section upstream and a section downstream from the body, represented by 
the left-hand term in equation (4), has a dehite magnitude equal to the force 
produced by the integral of the normal stress gZ = -@-pzz over any down- 
stream section. Strictly, jj + 0, so that the wake of a self-propelled body is not 
one of zero momentum flux. 

4. Experimental results and analysis 
4.1. Energy tramformution 

If the experimental results are t o  give an insight into the overall flow structure 
and the mechanism of energy transformation, they have to be interpreted in 
accordance with the equations of motion. Of particular importance in this regard 
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is the energy equation of the turbulence, which, when expressed in cylindrical 
co-ordinates x,  r, and 8, for a steady, axially-symmetric, mean flow of an incom- 
pressible fluid without spiral component and not affected by external forces, 
reduces to 

The terms of this equation have been so arranged that the left-hand side repre- 
sents the rate at which work is done per unit volume and the right-hand side the 
corresponding rate of energy change. The first term signifies the rate at which 
energy is transferred from the mean motion to the turbulent; so far as the 
turbulence is concerned, it represents an external supply of energy, as a result of 
the working of the mean motion against the turbulent stresses. The second and 
third terms represent the rates at which work is done by the pressure fluctuations 
and by the viscous stresses in the turbulent motion. The three terms on the 
right-hand side indicate the rates of change of the turbulence kinetic energy 
ip? = (u'z+vf2+wf2)& through convection by the mean motion, diffusion by 
the turbulence, and dissipation into heat by direct action of viscosity. The latter 
quantity is explicitly expressed as 

- - -  

If the Reynolds number of the mean flow 9, = UoD/v is assumed to be 
sufficiently high for the mean viscous stresses to be negligible and for the 
Kolmogoroff approximation - 

(7) 
auf 2 

A = 15P (x) 
to apply, and if, furthermore, use is made of the boundary-layer approximations 
modified for wake flows with slow lateral spreading, then equation (5) assumes 
the form 

An integral relationship corresponding to  that of the previous momentum 
analysis is obtained by integration of equation (5) over a cylindrical region of 
radius ro extending downstream from the initial section of measurement at axial 
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position x1 to a final section at x; with the same assumptions applied above, the 
integral form of the turbulence-energy equation becomes 

The limits shown on the right-hand sides of the second and third terms indicate 
that the differences between the respective integrals at axial positions x and x1 
should be evaluated. As follows from the earlier discussion, the successive terms 
in equations (8) and (9) signify transfer of energy from the mean flow by turbu- 
lence production, convection and diffusion of turbulence energy, and viscous 
dissipation into heat. It should be noted that the diffusion in the axial direction 
has been neglected in equation (8) but retained in equation (9), because, due to 
the integration with respect to x, its contribution need not be negligible in the 
latter equation. 

If the turbulence-energy production were concentrated in a point, as in an 
ideal case of flow past a point source of turbulence, then the last two equations, 
exclusive of the f i s t  terms, would give the complete story about the energy 
transformation. I n  the actual case investigated, however, there exists an initial 
shear regime in which equations (8) or (9) have to be supplemented by the energy 
equation of the mean motion. In its integral form, approximated by the same 
assumptions as the turbulence-energy equation, this equation reads 

where 7 is the resultant mean velocity, which is very nearly equal to ii within 
the range of measurements. The production term of equation (9) appears once 
again, but with a negative sign, for it now represents the rate at which energy is 
lost by the mean motion over the region considered. The remaining terms 
represent: the first, the increase in mean energy flux between the initial and final 
section; the second and third, the cumulative rates at which work is done by the 
mean pressure and by the turbulence stresses, respectively. 

More important than the check upon the general accuracy of measurement is 
the overall information on the dynamics of the flow that can now be obtained 
by an evaluation of the data in accordance with these energy equations. Their 
approximate forms seem justified by the moderately high Reynolds number of 
around 55,000 and by the observed slow spreading of the diffusion zone 
(dlogr)/d logx < 1, see figure 14). A comprehensive discussion of equations (8) 
and (9) cannot be given before reliable data for the determination of the diffusion 
and dissipation terms become available from future measurements. Neverthe- 
less, some general conclusions can be drawn from the partial evaluation depicted 
in figures 4 and 5.  
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For any point in the wake cross-section represented in figure 4, the local rate 
of production (&st term of equation (8)) is substantially smaller than the corre- 
sponding change in convection rate (second term of equation (B)), contrary to 
conditions in elementary shear flows (Townsend 1949). Of course, figure 4 is only 
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energy is produced over an extremely limited shear zone; at the beginning of this 
zone, the turbulence energy is transferred by convection and diffusion at almost 
the same rate as it is produced, while dissipation only gradually sets in; as the 
rate of diffusion becomes negligible past the shear zone, the axial rate of change 
of the cumulative rate of dissipation approaches that of the rate of convection. 
The last fact in particular distinguishes the investigated flow from elementary 
shear flows, in which equilibrium is approached between the rates of change of 
the cumulative dissipation and production rates (compare Rouse 1960). 

To complete the description of the overall picture of energy transfer, the mean- 
energy integrals of equation (10) have been plotted in figure 6 as evaluated by 
Ridjanovic (1963). While the turbulence stresses do almost no work in producing 
turbulence beyond x / D  = 10, they continue to do conservative work, the rate of 
change of which is balanced by that of the conservative work of the mean pressure. 
Beyond z /D  = 25 all the mean-energy integrals attain very nearly constant 
values. The agreement of the evaluated curves in figure 6 with the requirement 
of the equation becomes evident from the proximity to the zero line of the sum 
of corresponding ordinates of the four curves. The scatter of the points, calculated 
from the first integral of equation ( lo) ,  is due to the great sensitivity of the 
integrand to slight errors in the determination of U,. 

4.2. Variation of flow characteristics 

The actual experimental data of the various flow characteristics in the wake of a 
self-propelled body, corrected for known bias of instruments and equipment 
as discussed earlier, are reported by Ridjanovic (1963) and Wang (1965); the 
velocity difference ?id = 5- U,, the mean pressure ji referred to the pressure in 
the undisturbed free stream, and the turbulence characteristics u‘v’, uf2, vp2, wp2, 
by the former, and the auto-correlation fuP’.lrion by the latter. For the following 
representation of experimental results :n table 1 and in figures 7 to 11, points 
from faired curves through each set of data have been used rather than the 
measurements themselves, and all values have been reduced to a non-dimensional 
form through division by suitable reference magnitudes. Four of these magni- 
tudes, namely, U, = (?id)max, the radial distance q at which the axial 
turbulence intensity up equals half of its maximum value, and the integral scale L 
as defined by equation (2) will play important roles as velocity and length scales 
in the approximate analysis of the experimental results (hereafter, mean-square 
and root-mean-square symbols are reduced to up2 and up where this does not lead 
to misinterpretation). The relative axial distance from the disk xo/D = 2 at 
which the extrapolated curve of U;/u&, was found to intersect the abscissa z has 
been adopted as virtual origin-a point which can be considered a virtual source 
of turbulence of infinite intensity and zero scale. 

The approximate analysis of the variation of flow characteristics has been 
based on the hypotheses of Reynolds-number similarity and self-preservation, 
both of which are similar in principle to the hypotheses used in the analyses of 
homogeneous turbulence and elementary turbulence-shear flows (Townsend 
1956) yet are significantly different in form. The concepts of the development of 

---- 
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the turbulence structure which underlie the two hypotheses are, indeed, no less 
applicable to the flow under consideration: First, the turbulence or eddy motion 
is generated by inertial instabilities in the mean flow and governed by inertial 
interaction of the eddies, so that viscosity should affect only the dissipative com- 
ponents of the motion, which contain relatively little energy provided W, is 
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0.127 
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0.0310 
0.0232 
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0.124 
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3.172 0.72 
1.481 0.875 
0.689 1.025 
0.418 1.12 
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0.158 1.35 
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FIGURE 7. Radial vmistion of mean-flow characteristics in the wake of 
a self-propelled body. 

large. Secondly, as the eddies are carried along by the mean flow within a rela- 
tively narrow region, their structure is likely to approach a state of moving 
equilibrium as it has been continuously developing from earlier ones. Even 
though turbulence continues to be produced by the mean motion within an initial 
shear rbgime, the interrelation between turbulent and mean-flow patterns is so 
strong-the former being a product as well as a source of change for the latter- 
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that both flow patterns may be expected to attain asymptotically self-preserving 
forms that are independent of the Reynolds number and the particular initial 
conditions of flow generation. 

Although the propositions for the application of the hypotheses are thus given, 
the final justification has to come from experiments. As far as the flow character- 
istics plotted in figures 7-10 are concerned, one is inclined to affirm the existence 
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of self-preserved profiles. Ridjanovic (1963) reports a change in the shape of 
the mean-velocity profile only for x/D = 50. However, the measurements at  
this station were almost of the order of the estimated experimental error and are 

1 .o 

0.8 

0.6 

'2 
1 %  0.4 

0.2 

exp [ -0.69 (dri) *I, equation (23) 

0 

1.00 

0.75 

0.50 

R, 

0.25 

0 

-0.25 

0.5 1.0 15 0.2 2.5 

.I.; 
FIUITRE 10. Radial variation of turbulence energy. 

0 4 8 12 16 

UOTIL 

FIGURE 11. Auto-correlation function of the axial-velocity fluctuation. 



Flow in the wake of sev-propelled bodies 639 

therefore inconclusive. In  regard to the deviations of the turbulence-intensity 
profiles from a self-preserved shape, one must bear in mind that the background 
turbulence in the air tunnel had an increasing effect downstream as the ratio of 
its relative intensity to &,/U, grew to 8s much as 40 yo at x/D = 130. In  view 
of this fact, the self-preservation of the profiles in figure 9 is most remarkable. 
With the experimental scatter minimized by plotting the sum of the three 
measured quantities ;is2 = U ’ ~ + V ’ ~ + W ‘ ~  in figure 10, a self-preserved profile is 
even more clearly discernible (rz is the radial distance at which ?equals half of 
its maximum value). 

The notable difference between the self-preserved profiles for simple jets and 
wakes and those for the specific jet-wake investigated lies in the number of scales 
necessary to normalize these profiles or describe them analytically. While one 
pair of scales (velocity and length) proved to be sufficient in the former case, two 
pairs are required in the latter-one (U, and ra) characterizing the inhomogeneity 
and one and L) the structure of turbulence. Even though other quantities 
have been used in the following sections and in figures 7, 8, and 10, they all can 
be expressed in terms of these four scales, as will be shown below. 

- - -  

4.2.1. The shear r&irne 
In  accordance with the hypothesis of Reynolds-number similarity, the cross- 
sectional variations of all flow characteristics should be independent of the 
Reynolds number. By the definition of self-preservation in its more general form, 
moreover, they should be expressible non-dimensionally as universal functions 
of a relative radial position T = r/ra through suitable kinematic and dynamic 
scales, i.e. 

These functions are subject to restrictions imposed by the momentum and energy 
equations. For a region of flow in which (a)  the distributions of flow charac- 
teristics are independent of Reynolds number and self-preserved as defined by 
equations (ll),  (b )  the viscous stresses are small compared to the turbulent 
stresses, and (c) the velocity difference Ed = ii- U, is small compared to U,, the 
momentum equation simplifies to 

and the mean energy equation, derived from the first Reynolds equation for the 
purpose of this analysis, becomes 



640 Eduard Naudascher 

Since these relations between the universal functions must be true for all values 
of x, and since each of the integrals is a numerical constant, the coefficients of 
the integrals should be either zero or proportional to each other. The conditions 
for a self-preserving flow are, hence, 

and 

jPmin/p U, U, = const., 

u2a,/U,U, = const., 

A reduction of the reference scales in equation (1 1) to the significant velocity 
and length scales U,, &,,, r ) ,  and L is achieved through equation (14a) and, so 
far as (U’V~),,, is concerned, by means of the Boussinesq assumption 
- 

With the predominant part of the turbulent movements (i.e. the part containing 
most of the turbulence energy) in a quasi-equilibrium state as proposed earlier, 
it  is reasonable to expect that the eddy viscosity E should depend only on the 
velocity and length scales u* and L characterizing these movements. On 
dimensional grounds then, s/ (Lu*)  should be a constant throughout the diffusion 
zone. If the intermittent character of the flow due to the sharply separated 
regions of turbulent and non-turbulent fluid were taken into account, a velocity 
scale characteristic of the turbulent fluid would be roughly u* = J(u’2/y), where 
y is the intermittency factor; however, it  is well within the accuracy of this theory 
to assume u* - u-. With the additional, experimentally verified assumption 
that L is constant over any cross-section, E N Lukax becomes independent of 
r (which in itself is verified by the plot in figure 4), and (m),,, can h a l l y  be 

Herewith, the alternative form of equation (15) becomes 

--- - const. dr )  
L&,, ax 

A further reduction in generality of the universal functions-for example, the 
replacement of the scale u* by U,, as has been customary to date-would not be 
compatible with the experimental results. -t Therefore, the equations of momentum 
and mean energy merely provide necessary conditions for the axial variations of 
the scales rather than their solution. 

t For (u’zt‘),, N Ui ,  equation (15a) would yield Ud N d(r+)/dx, which is not verified 
by the experiments. The total turbulence is apparently less closely connected with the 
local mean-flow conditions than in cases of elementary free-turbulence shear flows; in the 
latter, u” as well as u- were found to  have self-preserved profiles when related to Ui. 

- 
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In  order to  check the validity of the analysis, the parameters of equations 
(14), (15), and (18) were evaluated from the experimental data in tables 1 and 3; 
from their representation in table 2 it is evident that, as predicted, the parameters 
of equations (14) and (18) vary only little, apparently at random, and the para- 
meters of equation (15) tend toward constant values. 

2 - 
D 
5 
7 

10 
15 
20 
25 

Parameter of equations 

(14a) (14b) (15a) (15b) 

-0.40 9.5 3.0 - 0.36 
-0.33 11.1 2.4 - 0.26 
-0.31 10.6 1.8 - 0.20 
-0.36 9.7 1.14 -0.14 
-0.28 8.3 1.09 -0.12 
-0.36 8.5 1.02 -0.12 

TABLE 2 

1 

(18) (35) 
1.8 0.48 
1-9 0.51 
2.1 0.54 
1.6 0.40 
1.7 0.41 
1.9 0.47 

It can be shown that the conditions expressed by equations (14), (15), and (18) 
also hold for the state of self-preservation in the wake of a self-propelled two- 
dimensional body or a line source of turbulence. The most interesting result is 
that the mean velocity difference decays in proportion to the square of the 
velocity fluctuation. 

4.2.2. The shear-free r6gime 
No use has yet been made of the turbulence-energy relationship. Even in the 
simplified form of equation (8) ,  however, this relationship does not lend itself to 
analysis without additional approximations. The greatest obstacle to analysis is 
the sum of the two terms in the third expression of equation (8). Although each 
plays a similar role in transporting turbulence energy from one part of the flow 
to another, there exists no similarity in their relation to  local or overall flow 
conditions, nor does there necessarily exist a relation between them (Townsend 
1956). It is therefore a drastic simplification to assume the combined terms to 
be proportional to the local gradient of turbulence energy. Nonetheless, this 
proportionality is adopted here, because it leads to the mathematically simplest 
form which is still physically plausible, at least so far as the energy-velocity term 
is concerned, 

The factor of proportionality in this expression may be designated as an 
energy-dihsion coefficient in analogy to the coefficient E for momentum diffusion 
in equation (16). 

If the analysis is restricted to the downstream region of negligible shear and 
nearly uniform mean velocity distribution, and if the experimental observations 
are applied, that (a)  the components of the turbulence intensities become almost 
equal, i.e. uI2 = @ (see table 1, columns 6 and 9), and (b) the dissipation length 
A defined by equation (3) is independent of the radial position, equation (8) can 

- 
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For flow which is self-preserving in accordance with equation (1 1 c), this equation, 
when integrated over a cross-sectional plane from the centre-line to a circle 
outside the diffusion zone and divided by the constant /hqdq, yields 

because the integral of the second term of equation (20) is zero at both integration 
limits. Through equations (11) and (21)' equation (20) finally leads to the 
differential equation for h(7) 

in which the diffusion coefficient ee may still be a function of both x and q = r / q .  
In  order to proceed, it will be assumed that E,  - Lu& on the basis of similar 

arguments as used for the specification of E .  This assumption has two significant 
consequences: first, since none of the terms within theparenthesesof equation (22) 
varies with 7, and since their combination must be invariant with x for this 
equation to be identically satisfied, the parenthetic expression must be a con- 
s t a n t a  condition already obtained by equation (18); second, h(7) becomes 
a Gaussian error function-a result which is contained in the complete solution 
of equation (20), i.e. 

and is well confirmed by the experiment (see figure 10). Although the variation 
of with x is included in this solution, i t  cannot be evaluated without knowledge 

The counterparts of equation (21) for flows past a line source and a plane source 
of A(x). 

of turbulence are derived in a similar manner as 

(24) 
1ov du:ax/dx dygldx -- 

Y& 
'2 u,h2=- umax 

and 

respectively. They reveal the influence which different degrees of diffusion-zone 
spreading have on the decay of turbulence energy and will be used for comparison 
in the following chapter. The form of and conclusions drawn from equation (22) 
remain unchanged for flow past a line source of turbulenoe. 

4.2.3. Power-law approximations 
For both the shear and the shear-free rAgimes, a complete prediction of the axial 
variation of flow characteristics is not possible with the equations presented 
unless they are supplemented by additional hypotheses. Although such predic- 
tion is bound to  become less rigorous with each hypothesis, it is still worth 
pursuing. Beside the obvious advantage of an analytical tool, it provides, 
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through comparison with experimental results, an indication as to which one of 
different possible dynamical concepts (on which the hypotheses are based) 
applies most closely to the flow under consideration. In  the following, two 
approaches will be presented, one utilizing and one avoiding the power-law 
approximations that have become standard in the analyses of free-shear flows 
and grid turbulence. 

As a matter of fact, the system of simultaneous equations (14), (15), and (17), 
combined with hypothesis (b )  below, does yield power laws in x as solutions for 
the unknown functions, at least so far as the shear regime is concerned. Suppose, 
then, power laws are adopted for the entire field of flow, i.e. 

u,/uo = Cl[(Z - zo)/.w, F,i,/+PG = C,[(x - x,)/DP', G * X / u :  = Q , P  - x o ) / W ,  

(a)max/U:  = C,[(x- xO)/D]"", r*/B = C,[(Z- xO)/B]m, LID = C,[(x - xO)/D]"', 
(26) 

in which C1-& are constants within the various zones and the axial position is 
referred to  the virtual origin at x = xo. As a consequence, the conditions of 
self-preservation for the shear regime, contained in equations (14), (16a), and 
(IS), take the forms n ' -n  = 0, n * - n  = 0, (27) 

n - n " + m - I  = 0, (28) 
nt-4m+2m'+2 = 0, (29) 

which are equally valid for both point and line sources of turbulence. The last of 
these equations can also be deduced from equation (22) and therefore applies 
to the shear-free regime as well. 

It is for the shear-free regime that progress in the analysis can be achieved 
through the supplementary conditions, obtained for a point source and a line 
source by substituting equation (26) into equations (21) and (24) 

and 

if these conditionst are combined with the assumptions that : 
(a)  Corresponding zones of decay for different sources of turbulence are 

characterized by similar variations of A with x, i.e. by similar values of 
UOA2/[u(x-xA)] ,  and 

( b )  Loitsiansky's parameter is invariant along the x-axis. 
The first assumption seems reasonable on the basis that some similarity 

between the flows considered can be expected with respect to the structure of 
the finer, locally isotropic turbulent movements. Less justified seems to be the 
second, in that Loitsiansky (1945) derived the invariance of the parameter 

d2 JOw s4R ds, 

t It is one of the inconsistencies of the power-law approach that the axial position 
at which h = 0 is different from xo (compare Batchelor & Townsend 19485, b) .  The condi- 
tion for a plane source of turbulence equivalent to equation (30) follows from either of 
these equations through m = 0. 

41-2 
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(where d 2 R  is the two-point velocity correlation and s is the distance between 
the points) under propositions which, as was shown by Batchelor & Proudman 
(1956), do not strictly apply even to homogeneous turbulence except in the final 
zone of decay. Nevertheless, Loitsiansky’s invariance condition was experi- 
mentally verified by Stewart & Townsend (1951) for the initial zone of decay as 
well and was repeatedly used with satisfactory results in the derivation of decay 
laws for this zone, e.g. by Kolmogoroff (1941) and Frenkiel (1948). It is on a 
similar empirical basis that the invariance of the parameter 

U ?  uo d? [IOm (+)* R, 7 1  r-0 = const. 

in which R, and U0r replace R and s, respectively, is now postulated for the 
inhomogeneous turbulence behind a point or a line source. For the point source 
of turbulence this postulate is verified in figure 11 by the self-preserved shape of 
the auto-correlation function R,, which makes the integral in equation (31) 
invariant, and in table 3 by the tendency toward a constant value of the factor 
(U’~L~),=~. 

XlD LID [10B~’aL6/( U:DS)lr,o 
7 0.20 3-9 

20 0.31 5.1 
50 0.34 1.8 
75 0.40 1.35 

100 0.43 1.4 
130 0.50 1.35 

TABLE 3 

With hypotheses (a) and (b ) ,  equations (29) and (30) can finally be evaluated 
by adopting the values 10 and 7 for Uoh2/[v(z-xL)] in the initial and inter- 
mediate zones of decay, in accordance with the theory of homogeneous turbulence 
(e.g. Batchelor & Townsend 1948a’b). Moreover, the trends of flow develop- 
ment can be estimated for ‘ semi-final ’ zones, defined here as regions in which the 
flow processes are still predominantly inertial so that equation (20), the basis for 
equations (30) and (31), still applies, yet regions which are close enough to the 
final zone that the proportionality L - A, characteristic of this zone, has already 
been approached. The corresponding values of Uoh2/[v(x - xA)] for the point 
source and the line source of turbulence are obtained as 4-44 and 4.21 with the 
aid of equation (30), or as 5.71 and 5.41 if, in analogy to the findings of Batchelor 
& Stewart (1950), u.12 = (+)a” is introduced instead of assumption (a)  of the 
Q 4.2.2 but local isotropy in the small-scale motion is assumed to prevail. 

The results listed in table 4 for the initial zones past a point source and a line 
source of turbulence are to be used with reservation, because the influence of 
turbulent shear, which was neglected in the derivation of equation (30), may still 
be appreciable and the empirical condition of equation (31) may not yet apply. 
Nevertheless, for an initial as well as for an intermediate zone, fair agreement 
with respect to order of magnitude and trend is obtained between the slopes of 
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the logarithmic plots in figures 14 and 15 and the predicted exponents for 
respective power laws in table 4. While the predicted exponents for q(x)  are 
slightly smaller than the corresponding power-law trend of Lx would require, 
the predicted exponents for L(z) are slightly larger-as is evident from a com- 
parison of the power-law trend of the data for L listed in table 3 with the 
respective prediction of table 4. 

Exponent of x for the power-law development of 

Point source Line source Plane source 
u, ha r I 3 - A 

Zone v(x-xA) .%A ukx L r& BA L y+ Se, u' L 
Initial 10 -0.27 -0.77 0.31 0.27 -0.15 -0.65 0.26 0.305 0 -0.50 0.207 
Inbmediete 7 -0.435 -0.935 0.375 0.22 -0.34 -0.84 0.335 0.25 -0.214 -0.715 0.286$ 
[lemi-find - -0.75 -1.25 0.50 0.125 -0.75 -1.25 0.50 0.125 - 
Finel 4 -  

- - 
- - -  -0.75 -1.25 0.50 - - -  - 

t According to Stewart & Townsend (1951), baaed on Loitsiansky's invariant. 
$ According to v. K & m h  & Howarth (1938), baaed on Loitsianeky's invariant. 

TABLE 4 
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FIGURE 12. Comparison of the trend of equation (34) with data of 
Batchelor & Townsend (1948b) for grid turbulence at &'M = 650. 
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FIGURE 13. Graphical representation of equations (38) and (39). 
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FIGTJRE 14. Variation of wake width behind a self-propelled body. 
- , Equation (38a)  with h,/D = 0.135 and (r$,/D = 2.5. 
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The value of table 4 lies in the fact that it permits direct confrontation of the 
laws of flow development for the different sources of turbulence with the familiar 
laws of decay of homogeneous turbulence behind a grid. It is to be noted, how- 
ever, that, in accordance with the different rates of turbulence-energy decay, the 
h a 1  zones are more or less rapidly approached so that the zones listed in table 4 
by no means signify equivalent portions of the flows considered; any zone past 
a point source of turbulence is expected to be smaller in extent than the corre- 
sponding zone past a line or a plane source, provided the Reynolds numbers of 
the flows are comparable. 

1 2 4 6 8 1 0  20 40 60 80 100 200 

(a - X 0 ) P  

FIGURE 15. Variation of maximum turbulence intensity behind a self-propelled body. 
-, Equation (39a) with h,/D = 0.135 and C’ = 35.6. 

The greatest distinction between the flows behind different sources of turbu- 
lence, of course, is the difference in the freedom of lateral spreading, the effect on 
the flow development of which is reflected clearly in table 4. The simiIarities in 
flow generation and structure, on the other hand, seem significant enough to  
warrant extension of the presently accepted concepts of the dynamics of decaying 
homogeneous turbulence to all these flows. In  either case, production of turbu- 
lence is limited essentially to a short zone of flow establishment which is 
characterized by disturbed and strained mean flow. Predominantly large-scale 
eddies are generated in this zone, of the order of the linear dimensions of the 
turbulence generator. In  a following ‘initial’ zone, energy is transferred by 
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inertial interaction to other scales which are smaller on the average because of 
the cascade process set up by viscous dissipation in the smallest eddies. If the 
Reynolds number of the flow is high enough for the dissipating eddies to be so 
reduced in scale that they contain only a negligible amount of the turbulence 
energy, then there will be a range of eddies which are not influenced by viscosity 
and may therefore attain a state of equilibrium. The equilibrium is not absolute, 
since the turbulence energy contained in this range diminishes gradually as the 
external supply of energy tends toward zero; and it cannot persist, since the 
condition of energy supply from outside of the equilibrium range changes 
according to laws which are not subject to and consequently do not satisfy the 
requirements of this range. An ‘intermediate’ zone is approached when there is 
no longer a distinction between energy-containing and large-scale eddies; it  ends 
when the turbulence energy, or the Reynolds number of turbulence 9, = hu&,/v, 
has decreased to the extent that inertial effects become negligible. With the 
smaller eddies decaying more rapidly than the Iarger eddies, a stable distribution 
over a limited size range of non-interacting eddies is reached in a ‘final’ zone. 
These eddies lose energy by direct viscous dissipations as their average size 
increases, until ultimately undisturbed conditions of flow are restored. 

It was pointed out earlier that, as a consequence of the power-law approxima- 
tions, the length scale h representative of the smaller, dissipating eddies is 
proportional to xi throughout the flow fields. As evident from table 4, the length 
scale L representative of the larger, energy-containing eddies in general varies 
with a power of x smaller than 8. Batchelor & Townsend (19484 have used this 
fact to explain why the power laws for the development of homogeneous turbu- 
lence must change from zone to zone; this explanation can now also be extended 
to the development of flow past any source of turbulence. As the ratio L/h, which 
is proportional to xm’-*, decreases, the range of eddy sizes present in the flow 
becomes continuously smaller. Since it is physically impossible for this trend to 
persist without limit, L/h is bound to approach a constant value, that is m’ --f 8, 
and the power laws of the remaining length and velocity scales must change 
accordingly. At the same time, the rate of growth of h must decrease; in the 
power-law approach this decrease is taken into account by abrupt changes of 
Uoh2/[v(x - xA)] and xA from zone to zone. 

4.2.4. A new approach 
The wide acceptance of power laws as mathematical formulations for the varia- 
tion of flow characteristics past a plane source of turbulence must not obscure 
the fact that no satisfactory deduction of such laws has yet been put forward. 
The value of the power laws lies in their mathematical simplicity. Their greatest 
drawback is that they can only serve as approximations over very limited zones. 
Moreover, since the zone limits are not specified, agreement between analysis 
and experiment seems rather arbitrary and of no significance except to the extent 
that all the measured variations of different flow characteristics agree with the 
respective analytical predictions simultaneously. The actual variation of the 
dissipation length h compares most unfavourably with the predicted propor- 
tionality h2 N x, as can be seen from figure 16. It appears as a rather forced and 
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unsatisfactory compromise when the factor of proportionality U, h2/[v(x - XJ] 

and the effective origin x = x, where h = 0 are assumed to change abruptly from 
zone to zone. 

I I I I 
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00 1 
0 6?b= 122, b = 003 cm, Mlb = 5.3, r,ib = 69.5 
o 255 0.03 5.3 69.5 
o 527 0.119 5.35 64.0 - 
o 1055 0.238 5.35 69.5 
0 1635 0.40 4.75 37.3 

2110 0.476 5.35 32.5 
8 3860 0.95 2 7  7.4 
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FIGURE 16. Comparison of the trends of equations (38c) and (39c) with corresponding data 
for grid turbulence. 0 8 ,  Batchelor & Townsend (1948b); (> @ 0, Batchelor & Town- 
send (1948a); @ 8, Stewart & Townsend (1951). 

In  the following, an attempt is made to eliminate the arbitrary subdivision of 
the flow field into limited zones and to replace the discontinuously changing laws 
of flow development with their undefined range of applicability by regular and 
overall-applicable functions. There are two ways to approach this objective : by 
choosing, empirically, a more appropriate formulation of h(x), or by employing 
more appropriate hypotheses. 

The first approach can best be illustrated with the example of a plane source 
of turbulence. For this case, integration of equation (25) yields directly 

- = C!exp ( -- :;I$) Ut2 

73 
If, for the purpose of demonstration, the simple power-law relationship 

(h/N)Z W M  = C,[(x - x,)/H-y** (33) 

is regarded as a sufficiently close approximation for small-enough W ,  (compare 
figure 16), equation (32) becomes 
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As evident from figure 12, this equation-with the experimental constants 
C, = 22 and C, = 0.0225 determined by fitting equations (33) and (34) to one pair 
of data of Batchelor & Townsend (1948b)-predicts the actual trend of u'(x) 
over a considerably wider range of (x-zo)/M than the (-#)-power and the 
inverse-square decay law derived by Batchelor & Townsend (1948~) and Tan & 
Ling (1962), respectively.? 

The introduction of an empirical relation for A(x) can be avoided by the 
simultaneous application of two hypotheses : 

(u) The length scales rg (or g+) and L, representative of the inhomogeneity and 
the energy-containing eddies, respectively, are proportional to each other, and 

(b) The correlation function R, (see figure 11) preserves its shape completely; 
that is, L N A. 

With the first hypothesis, equation (18) leads to the condition 

which applies to any flow regime behind either point or line source and is well 
confirmed by the experiments as evident from table 2.$ With hypothesis ( b )  
added, all length scales involved-namely, r+ (or y+), L, and A-are assumed to 
vary at equal rates, and equation (18) can be written as 

u;*$To = C' dhldx. (36) 
Like equations (18) and (35), this relation is equally valid for the point and the 

line source; for the plane source it can be adopted as an approximation to the 
conditions established by von K k m h  & Howarth (1937) for self-preserved 
correlation functions.§ Substitution of equation (36) into equations (2 l), (24), 
and (25) leads to the respective differential equations 

I 5v 
A'A"+M''+-A' = 0, 

VO 

1 5v 
h2A" + &Ah' + - h' = 0, 

UO 
(37) 

J 5v A'? + - A' = 0, 
UO 

7 The justification for the kinetic model used by Tan & Ling (1962) to deduce the 
inverse-square law must be questioned, as it would lead to an asymptotic, linear law of 
growth of the eddy scale, i.e. h - ( Z - X ~ ) ,  which is contrary to experimental evidence. 

$ when adopted with the power-law approximations, hypothesis (a) has the consequences 
that 2m-n' = 2 and that the ratio L/h decreases at an ever-increasing rate rather than 
tending toward a constant value. Since both of these consequences, particularly the latter, 
are contrary to experimental observation, hypothesis (a) could not be utilized in 64.2.3. 

3 Actually, the conditions are Llh - 9, and u' N dLldx  in the case of large @A when 
the 'viscous' term in the Kh4n-Howarth equation is neglected, and Llh = const. and 
u' N W,dL/dx in the case of small 9, when the 'convective' term containing the triple- 
velocity correlation is neglected. In  either case, the counterpart of equation (36) for & 

plane source of turbulence should read u'/Uo = CW,dh/dx, if hd%',/dx is ignored in com- 
parison to 9 , d h / d x  for large W,. It is remarkable that by replacing CW, by a 'constant' C', 
A(%) and u'(z) are so satisfactorily predicted as shown in figure 16. It seems as though the 
simplification CW, = C' compensates for the fact that the correlation function is not 
strictly self-preserved. 
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for a point source, a line source, and a plane source of turbulence, in which primes 
signify differentiations with respect to x. For a point and a plane source, realistic 
solutions of these equations are only possible with the limiting conditions x + co, 
h-th, and dh/dx+O. By adopting these conditions and the limit x+xo,  h+O 
for all three cases, the solutions become 

and ( 3 9 4  

for a point source, a line source, and a plane source of turbulence, respectively; 
E denotes the Euler constant 0.5772. Corresponding expressions for the variation 
of gA = hu&/v are obtained from equations (39) through multiplication by 
5A/hm, i.e. 

B ' A  = lOC"1- (h/Am)q, (40 b)  

9 A  = 5C'[1- (h/hm)]. ( 4 0 4  

The only experimental constants in these equations are A, and C', the latter 
evidently being related to the conditions of turbulence generation. As is apparent 
from equations (40 b )  and (~OC) ,  respectively, the factors 1OC' and 5C' are identical 
to the values of L3fA at the virtual origins. As a consequence of the hypothesis that 
all length scales are proportional to each other, equation (38) describes the varia- 
tion of any length scale, while equations (39) describe the variation of the only 
remaining velocity scale in the shear-free r6gime. A graphical representation of 
equations (38) and (39) is given in figure 13. 

Since the slope of a curve in the logarithmic plot of figure 13 is equivalent to 
the exponent of a power law, equation (39b)  is verified by the agreement in the 
region near the origin between the slope of the velocity curve for a line source 
and the exponent - 0.55 to - 0.6 for the power law of u& evaluated by Townsend 
(1956) from experiments with a two-dimensional turbulence generator. A verifi- 
cation of equations (38a, c) and (39a, c), moreover, is obtained from a comparison 
with experimental results in figures 14-16, for which purpose values for the axial 
distance xo at which h = 0 were adopted from the relevant references. In  con- 
sideration of the many simplifications and hypotheses that have been necessary 
to derive these equations, the agreement between analysis and experiment is 
most remarkable and little depreciated by the fact that the experimental con- 
stants were chosen to give the best fit: the constant h,/D = 0.135 adopted for 
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a point source of turbulence is of correct order of magnitude according to pre- 
liminary measurements of A;  the invariance of AJb, assumed within the range 
100 < g b  < 4000 for the plane source of turbulence, appears physically plausible; 
and the ' constants ' C' chosen to fit the data for grid turbulence are uniquely and 
consistently related to 9, as shown in figure 17.t The invariance of h,/b can be 
interpreted as a consequence of two facts: first, the eddies of which A, is the 
representative scale are most likely the remains of the largest, originally gene- 
rated eddies, which are least subject to the cascade process of energy transfer and, 

0 20 40 60 80 

(U ,  b l y ) i  

FIGURE 17. Variation of the experimental constant of equation (39c) with Reynolds 
number for grid turbulence according to data. 0, Batchelor & Townsend ( 1 9 4 8 ~ ~  b);  
CD 8, Stewart & Townsend (1961). 

therefore, still proportional in size to a significant length of the turbulence 
generator, say b ; t  and, second, since the rate of viscous growth of these eddies 
increases in the same proportion in which the time of growth diminishes with 
increasing fluid viscosity, it seems reasonable that viscosity does not affect the 
magnitude of A,. In other words, the Reynolds-number influence on the growth 
of h appears to be completely accounted for in the left-hand term of equation (38) , 
much as the growth of a single vortex filament was found by Rouse & Hsu (1951) 
to be completely representable in terms of vt/r& where ro denotes the original 
vortex size. 

-f AB was first suggested by von KArmAn (1938), the rod width b is a more signscant 
length scale for the grid geometry than the mesh width M .  Indeed, C' would have shown 
a less consistent trend if it had been plotted with respect to W M  instead of W,. Even more 
relevant, however, would have been a Reynolds number based on the wake width b, itself 
rather than on the width b of the wake generator. The C' value for the grid with rectangular 
bars would have been in better agreement with the curve in figure 17, and the validity of 
that curve would have extended to Reynolds numbers outside the range examined, where 
the ratio b,lb L expected to change. 
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Whether hm/D is also an invariant for a point source or a line source of 
turbulence remains to be investigated. By analogy to the conditions for a plane 
source discussed, one may speculate that h,/D as well as LJD, (r*),/D, and 
(yi) , /D will depend on the Reynolds number and the body geometry only to the 
extent that the ratio of the width D, of the early wake to the body diameter D is 
affected. The result that the wake width asymptotically approaches a constant 
value is in itself of great practical interest in regard to wakes of self-propelled 
bodies and seems to be confirmed by visual observations of condensation trails 
past jet-propelled aircraft. For the specific Reynolds number and geometry 
investigated (figure l), (ri),/D is found to be roughly 2.5. 

Although equations (38) and (39) are valid only for the shear-fiee regime, they 
give a surprisingly good approximation even close to the turbulence generator, 
as is evident from figures 14 and 15. As A/h, becomes very small near the origin, 
the right-hand sides of equations (38) can be replaced by the terms of lowest 
power of A/A, resulting from a power expansion. Except for the point source of 
turbulence, the familiar linear variation of A2 with Z - Z ~  is thus obtained, the 
parameter UOh2/[v(x - xO)] assuming the values 10, 20, and 00 for the plane, line, 
and point source, respective1y.j- By substituting the relevant value into 
equation (39c), along with the empirical formula 

(92,Jo = 5C‘ = 0.675Wt 

u’/U0 = 0.214[(~ - ~,)/b]-$, 

(41) 

verified in figure 17, the asymptotic law of decay near a plane source of turbulence 
is obtained in the form 

(42) 

which agrees with experimental evidence even so far as the numericd coefficient 
and the lack of dependence on Reynolds number are concerned (compare also 
with the commonly accepted power law for the initial zone of decaying homo- 
geneous turbulence). 

which of all flow characteristics is best suited to 
define the state of turbulence at any flow section, can now finally be represented 
as a function of the distance z from the turbulence generator and the conditions 
b, gb of turbulence generation. Upon substitution of equations (38c) and (41) 
and of A,/b = 24 in equation ( ~ O C ) ,  one obtains 

The Reynolds number 

(Z - Zo)/b = 115-2&?’,[( 1*48&?,/@) - 1 -log (1.4892,&)] (43) 

for the plane source of turbulence. This relationship, which is graphically 
represented in figure 18, is valid at least for grid geometries and Reynolds 
numbers for which the values of the experimental ‘constants ’ C’ and A,/b were 
verified. For a point source and a line source of turbulence, equivalent relation- 
ships can be deduced from equations (40a) and (40b) when more information 
with respect to the experimental constants becomes available for these cases. 

t According to equations (38), U , h ~ / [ v ( ~ - ~ , ) ]  drops off to zero monotonically as 5 -t 00. 

In the case of a plane source, for example, the values 7 and 4, used in the power-law 
approach to characterize the intermediate and the final zone of decay (table 4), are reached 
at v(z- zoo)/( U, h2,) equal, roughly, to 0.027 and 0.16. 
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FIUURE 18. Variation of Wh with axial distance from a plane source of 
turbulence according to equation (43). 

5. Conclusions 
Concerned mainly with flow in the wake of an axisymmetric, self-propelled 

body (i.e. the practical realization of flow past a point source of turbulence) this 
investigation has revealed significant analogies to elementary free-turbulence 
shear flows in an initial rtjgime and to decaying homogeneous turbulence in 
a subsequent shear-free rbgime. In  fact, so far as statistical flow characteristics 
are concerned, the inhomogeneous turbulence generated by flow past a point 
source and a line source of turbulence, on the one hand, and the homogeneous 
turbulence simulated by flow past a plane source like a grid, on the other hand, 
have proved to be amenable to analogous treatment as axisymmetric, two- 
dimensional, and one-dimensional counterparts. 

As in other free-turbulence flows, the predominant part of the total transfer 
of energy from the mean to the turbulent motion takes place over an extremely 
limited zone of pronounced shearing action. Whereas turbulence continues to be 
produced with distance downstream in elementary free-turbulence shear flows, 
a practically shear-free regime is rapidly approached behind the various sources 
of turbulence, and, while the cumulative dissipation rate gradually assumes an 
axial rate of change equal to that of the cumulative production rate in the former, 
it tends to  approach that of the local convection rate in the latter cases. As in 
other free-turbulence flows, moreover, the variations of mean-flow and turbu- 
lence characteristics in the wake of a self-propelled body exhibit both Reynolds- 
number similarity and self-preservation. The form of self-preservation, however, 
is more complex, in that two pairs of velocity and length parameters rather than 
one are required for its mathematical representation. As a consequence, the 
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equations of momentum and energy are no longer sufficient for a complete pre- 
diction of the axial developments of flow characteristics on a similarity hypo- 
thesis alone; they only constitute the necessary relations between these develop- 
ments-such, for example, as the experimentally confirmed proportionality 
between the decays of the mean velocity difference and the mean square of the 
velocity fluctuation. 

For the radial variation of turbulence energy in the shear-free rhgime, 
a surprisingly good prediction has been found to be the Gaussian error function 
deduced from the turbulence-energy equation on the additional assumptions of 
a gradient type of energy diffusion and a phenomenological type of diffusion 
coefficient. For the axial variation of flow characteristics, power laws have been 
derived on the hypotheses that changes of the dissipation length with axial 
distance are identical for respective initial and intermediate zones behind various 
turbulence sources and that, as experimentally verified, Loitsiansky’s parameter 
remains invariant along the wake centre line. Beside its advantage of mathe- 
matical simplicity, this approach permits direct comparison with the well- 
established approximate theory of decaying homogeneous turbulence; however, 
not more than the flow development within a vaguely defined and extremely 
limited intermediate zone and its approximate trend upstream and downstream 
proved to be predictable thereby. 

Substantial improvement over the power-law approach has been achieved 
through application of the hypothesis that, in the shear-free rhgime, all Iength 
parameters of the flow remain proportional to each other. The axial variation of 
flow characteristics predicted in this way for flows past a point source, a line 
source, and a plane source of turbulence agree very closely with corresponding 
experimental data over the entire range of measurement. Although this agree- 
ment may be more indicative of a favourable compensation of inconsistencies 
involved in the various hypotheses and assumptions than of their relevance, the 
advantage of the new approach obviously lies in the fact that, with the two 
experimental constants evaluated, there remains no uncertainty as to the range 
of axial positions and Reynolds numbers over which the analysis applies. Only 
with respect to the result that all length parameters approach asymptotically 
constant values is experimental evidence not quite conclusive; for small Reynolds 
numbers the turbulent movements cease before the asymptotic range is 
approached, whereas for large Reynolds numbers this range comes to lie beyond 
the test section of an ordinary air tunnel. 

Results of this study that are worth further investigation are the existence of 
a more general form of self-preservation than that known from elementary free- 
turbulence shear flows and the asymptotic axial development of the dissipation 
length toward a constant value. There is evidence (Naudascher 1964) that the 
new concept of self-preservation will provide a basis for the analysis of free-shear 
flows like combined jets and wakes or jets in a general stream, which to date are 
believed not to be self-preserving. The successful prediction of the dissipation 
length by a function of x equivalent to a power law with asymptotically 
decreasing exponent, on the other hand, makes it promising to re-examine such 
experimental results as the one-fourth-power law obtained by Cooper & Lutzky 



656 Eduard Nadmcher 

(1955) and rejected because of its disagreement with the supposedly well- 
established one-half-power law of the conventional theory of homogeneous 
turbulence. 

There definitely remains the need to investigate further the physical implica- 
tions of the hypotheses introduced. Not until the dynamics of the turbulence 
processes is fully understood and properly reflected in the analysis will the latter 
be more than a fortunate algebraic approximation to  the actual flow development. 

The investigation reported here was conducted at the Institute of Hydraulic 
Research of the University of Iowa under Contract Nonr1611(03) with the 
Office of Naval Research, Department of the U.S. Navy. Experimental data 
were collected by Messrs H. A. Caruso, M. Ridjanovic, and H. Wang. Most of the 
data reduction and parts of their evaluation were performed by the latter two, 
both Research Associates of the Institute. Extensive technical assistance with 
the hot-wire measurements was given by Dr P. G. Hubbard and Mr J. R. Glover. 
During all phases of the study, valuable clarifications and stimulations were 
received from discussions with various staff members of the Institute, and the 
guidance of its director, Dr Hunter Rouse. The manuscript was critically reviewed 
by Dr Rouse and Dr E. 0. Macagno. 
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